Exome Sequencing Identified a Splice Site Mutation in FHL1 that Causes Uruguay Syndrome, an X-Linked Disorder With Skeletal Muscle Hypertrophy and Premature Cardiac Death.
نویسندگان
چکیده
BACKGROUND Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. METHODS AND RESULTS An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. CONCLUSIONS Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies.
منابع مشابه
Identification of a Novel Splice Site Mutation in RUNX2 Gene in a Family with Rare Autosomal Dominant Cleidocranial Dysplasia
Introduction: Pathogenic variants of RUNX2, a gene that encodes an osteoblast-specific transcription factor, have been shown as the cause of CCD, which is a rare hereditary skeletal and dental disorder with dominant mode of inheritance and a broad range of clinical variability. Due to the relative lack of clinical complications resulting in CCD, the medical diagnosis of this disorder is challen...
متن کاملA ‘second truncation’ in TTN causes early onset recessive muscular dystrophy
Mutations in the gene encoding the giant skeletal muscle protein titin are associated with a variety of muscle disorders, including recessive congenital myopathies ±cardiomyopathy, limb girdle muscular dystrophy (LGMD) and late onset dominant distal myopathy. Heterozygous truncating mutations have also been linked to dilated cardiomyopathy. The phenotypic spectrum of titinopathies is emerging a...
متن کاملI-41: Genetic Causes of Premature Ovarian Failure (POF) and early Menopause
Premature ovarian failure (POF) is a heterogeneous disorder, defined as menopause under age 40 years. The prevalence is 1%; POF before age 30 years is much less common. Chromosomal causes have long been recognized - visible deletions of the X chromosome, 45,X/46,XX mosaicism, and autosomal rearrangements (balanced translocations). Toxins or iatrogenic causes (e.g., chemotherapeutic agents) are ...
متن کاملIsolated X-linked hypertrophic cardiomyopathy caused by a novel mutation of the four-and-a-half LIM domain 1 gene.
BACKGROUND Hypertrophic cardiomyopathy with severe left ventricular diastolic dysfunction has been associated with marked exercise intolerance and poor prognosis. However, molecular pathogenesis of this phenotype remains unexplained in a large proportion of cases. METHODS AND RESULTS We performed whole exome sequencing as an initial genetic test in a large Czech family with 3 males affected b...
متن کاملIdentification of a Novel Four and a Half LIM Domain 1 Mutation in a Chinese Male Presented with Hypertrophic Cardiomyopathy and Mild Skeletal Muscle Hypertrophy
Correspondence To the Editor: The human four and a half LIM domain 1 (FHL1) gene, located on Xq26.3, encodes for a protein with only LIM domains. LIM domains, named after their initial discovery in the proteins Lin11, Isl‑1, and Mec‑3, are cysteine‑rich protein motifs composed of two contiguous zinc finger domains separated by a two‑amino acid residue hydrophobic linker. At least three splice p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Cardiovascular genetics
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2016